Email: [email protected]
Address: Malianwa Road, Beijing, China
Github: LMH0066
Blog
Publication
<aside>
<img src="/icons/bookmark_gray.svg" alt="/icons/bookmark_gray.svg" width="40px" /> My main research area is 3D genomics and gene regulation network. The central theme of my current research is to use deep learning approaches to observe the dynamics of chromatin conformation during cell development, and to characterize chromatin conformation and gene expression diversity.
</aside>
Education
B.S. (ComputerScience) University of Science and Technology Beijing, China, 2017.
M.S. (ComputerScience) University of Science and Technology Beijing, China, 2021.
Ph.D. (Biology) Chinese Academy of Medical Sciences and Peking Union Medical College, China, 2024.
Selected Publications
2025
- Li M*, Yang Y*, Wu R, et al. SEE: A Method for Predicting the Dynamics of Chromatin Conformation Based on Single‐Cell Gene Expression. Advanced Science. URL
- Jin Y*, Li M*, Li M*, et al. Machine-Learning Models With Multiple Imputation With Sequential Nearest Neighbors Imputation for Predicting the Prognosis of Idiopathic Sudden Sensorineural Hearing Loss Patients. Ear Hear. URL
- 陈阳,杨玉容,李铭鸿,李雪媛,ZL202510656424.1,基于RNA-DNA和DNA-DNA互作信息的染色质互作信息增强方法,2025-08-05。
- 陈阳,杨玉容,李铭鸿,2025SR1109530,HiClip软件 V1.0,2025-06-27。
- 陈阳,李铭鸿,杨玉容,龚海燕,张晓彤,2025SR0387586,MINE-Density软件,2025-03-05。
- 陈阳,李铭鸿,杨玉容,龚海燕,张晓彤,2025SR0389177,MINE-Viewer软件,2025-03-05。
2024
- 陈阳,李铭鸿,杨玉容,吴汝成,ZL202411098137.5,一种基于单细胞RNA表达数据的单细胞Hi-C图谱预测方法,2024-08-12。
- 陈阳,李铭鸿,杨玉容,吴汝成,2024SR1684092,基于单细胞RNA表达数据的单细胞Hi-C图谱预测软件 V1.0,2024-11-4。
2023
- Gong H*, Li M*, Ji M, et al. MINE is a method for detecting spatial density of regulatory chromatin interactions based on a multi-modal network. Cell Reports Methods. URL
- Gong H*, Li M*, Ji M, et al. Calculating the spatial density of regulatory chromatin interactions using multi-modal datasets from the same cell line. STAR Protocols. URL
Experience
Backend intern at ByteDance (2020.09 - 2021.02)
- Participate in two content safety-related projects.
- SQL performance optimization, improve the efficiency of querying millions of data by 30%.
- TB-level big data processing.